Design, synthesis, SAR, and molecular modeling studies of acylthiocarbamates: a novel series of potent non-nucleoside HIV-1 reverse transcriptase inhibitors structurally related to phenethylthiazolylthiourea derivatives.


A novel series of potent, selective HIV-1 N-acylthiocarbamate (ATC) ...
A novel series of potent, selective HIV-1 N-acylthiocarbamate (ATC) nonnucleoside reverse transcriptase inhibitors (NNRTIs) is described. The title compounds were synthesized through a highly convergent, one-pot procedure. In cell-based assays, the lead compound (17c) prevented the HIV-1 multiplication with an EC(50) of 8 microM. The lead optimization strategy was developed by single or multiple modifications of the three molecular portions, in which 17c was notionally divided. Molecular modeling studies led to the synthesis of O-(2-phthalimidoethyl)-N-(p-substituted phenyl)-N-acylthiocarbamates, which showed in vitro activities against HIV-1 in the low nanomolar range. Nevertheless, the title compounds retained low potency against HIV-1 strains carrying mutations (K103R, Y181C, and K103N/Y181C) responsible for NNRTI resistance. The hypothetical docking model of RT/17c and RT/25c, derived from X-ray crystallographic structure of a PETT derivative in complex with HIV-1 RT, revealed that the model structures of ATCs do not approximate the NNRTI butterfly-like conformation. Analysis of these hypotetical complexes helps to rationalize some SARs and resistance data.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.