Identification of the beta-binding domain of the alpha subunit of Escherichia coli polymerase III holoenzyme.

Abstract:

Rapid and processive DNA synthesis by Escherichia coli DNA polymerase ...
Rapid and processive DNA synthesis by Escherichia coli DNA polymerase III holoenzyme is achieved by the direct interaction between the alpha subunit of DNA polymerase III core and the beta sliding clamp (LaDuca, R. J., Crute, J. J., McHenry, C. S., and Bambara, R. A. (1986) J. Biol. Chem. 261, 7550-7557; Stukenberg, T. P., Studwell-Vaughan, P. S., and O'Donnell, M. (1991) J. Biol. Chem. 266, 11328-11334). In this study, we localized the beta-binding domain of alpha to a carboxyl-terminal region by quantifying the interaction of beta with a series of alpha deletion proteins. Purification and binding analysis was facilitated by insertion of hexahistidine and short biotinylation sequences on the deletion terminus of alpha. Interaction of beta with alpha deletion proteins was studied by gel filtration and surface plasmon resonance. alpha lacking 169 COOH-terminal residues still possessed beta-binding activity; whereas deletion of 342 amino acids from the COOH terminus abolished beta binding. Deletion of 542 amino acids from the NH2 terminus of the 1160 residue alpha subunit resulted in a protein that bound beta 10-20-fold more strongly than native alpha. Hence, portions of alpha between residues 542 and 991 are involved in beta binding. DNA binding to alpha apparently triggers an increased affinity for beta (Naktinis, V., Turner, J., and O'Donnell, M. (1996) Cell 84, 137-145). Our findings extend this observation by implicating the amino-terminal polymerase domain in inducing a low affinity taut conformation in the carboxyl-terminal beta-binding domain. Deletion of the polymerase domain (or, presumably, its occupancy by DNA) relaxes the COOH-terminal domain, permitting it to assume a conformation with high affinity for beta.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.