A single tyrosine prevents insertion of ribonucleotides in the eukaryotic-type phi29 DNA polymerase.


Three conserved motifs (named A, B and C) have been proposed to form ...
Three conserved motifs (named A, B and C) have been proposed to form the polymerization active site in all classes of DNA-dependent polymerases. In eukaryotic-type (alpha-like) DNA polymerases, motif A is characterized by the consensus "Dx2SLYP". Mutants in phi29 DNA polymerase residue Tyr254 of this conserved motif had been previously shown to be affected in dNTP binding. Here, we show that a single substitution of Tyr254 into a valine residue enables the enzyme to incorporate ribonucleotide substrates, without affecting its wild-type affinity for dNTPs. Whereas the wild-type enzyme preferred dNTPs more than two million-fold over rNTPs, the mutation of Tyr254 into valine reduced the discrimination for rNTPs up to 1000-fold. In addition to this discrimination mechanism, based on sugar selection, phi29 DNA polymerase is very inefficient when extending an RNA primer terminus, allowing its exonucleolytic degradation. These results indicate that the Tyr254 of phi29 DNA polymerase is responsible for the discrimination against the 2'-OH group of an incoming ribonucleotide. This is the first time that the invariant tyrosine residue of motif A is involved in ribo- versus deoxyribonucleotide discrimination in an eukaryotic-type DNA polymerase.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.