Steady-state and pre-steady-state kinetic analysis of 8-oxo-7,8-dihydroguanosine triphosphate incorporation and extension by replicative and repair DNA polymerases.


The kinetics of 8-oxo-7,8-dihydroguanosine triphosphate (8-oxo-dGTP) incorporation into DNA by Escherichia coli polymerases I exo- (KF-) and II exo- (Pol II-), HIV-1 RT reverse transcriptase (HIV-1 RT), and bacteriophage T7 exo- (T7(-)) were examined to determine the misincorporation potential for 8-oxo-dGTP and to investigate the role of base pairing symmetry in DNA polymerase fidelity. 8-Oxo-dGTP was found to be a poor substrate for the four polymerases, with insertion efficiencies >10(4)-fold lower than for dGTP incorporation. Insertion efficiencies of 8-oxo-dGTP were also consistently lower than for incorporation of dNTPs opposite template 8-oxo-G, previously studied in this laboratory. In steady-state reactions, T7(-) had a high preference for 8-oxo-dGTP insertion opposite A (97%) and HIV-1 RT, KF-, and Pol II- preferred to insert 8-oxo-dGTP opposite C. Misinsertion frequencies for 8-oxo-dGTP also varied considerably from frequencies of misinsertion at template 8-oxo-G adducts for Pol II-, HIV-1 RT, and T7(-). Pre-steady-state incorporation of 8-oxo-dGTP opposite C (but not opposite A) by HIV-1 RT, KF-, and Pol II- displayed biphasic curves, with rates of initial incorporation 2- to 11-fold lower than normal dGTP incorporation. Although extension past template 8-oxo-G adducts had previously been shown to occur preferentially for the mispair, extension past primer 8-oxo-G:template A or C pairs was variable. The low and comparable estimated Kd values for dGTP and 8-oxo-dGTP binding to HIV-1 RT alone or HIV-1 RT.DNA complexes indicated that the initial binding was nonselective and had high affinity. The large difference (>3 orders of magnitude) in kinetic Kdapp values for 8-oxo-dGTP and dGTP binding to HIV-1 RT.DNA indicates that there are contributions to the kinetically determined Kdapp (such as conformational change and/or phosphodiester bond formation) which may be involved in the selection against 8-oxo-dGTP. The differences in binding (Kdapp), incorporation, and extension kinetics of 8-oxo-dGTP compared to normal dNTP incorporation at template 8-oxo-G adducts indicate that polymerase fidelity does not depend solely upon the overall geometry of Watson-Crick base pairs and reflects the asymmetry of the enzyme active site.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.