The accuracy of reverse transcriptase from HIV-1.

Abstract:

A study was conducted to determine the fidelity of DNA synthesis ...
A study was conducted to determine the fidelity of DNA synthesis catalyzed in vitro by the reverse transcriptase from a human immunodeficiency virus type 1 (HIV-1). Like other retroviral reverse transcriptases, the HIV-1 enzyme does not correct errors by exonucleolytic proofreading. Measurements with M13mp2-based fidelity assays indicated that the HIV-1 enzyme, isolated either from virus particles or from Escherichia coli cells infected with a plasmid expressing the cloned gene, was exceptionally inaccurate, having an average error rate per detectable nucleotide incorporated of 1/1700. It was, in fact, the least accurate reverse transcriptase described to date, one-tenth as accurate as the polymerases isolated from avian myeloblastosis or murine leukemia viruses, which have average error rates of approximately 1/17,000 and approximately 1/30,000, respectively. DNA sequence analyses of mutations generated by HIV-1 polymerase showed that base substitution, addition, and deletion errors were all produced. Certain template positions were mutational hotspots where the error rate could be as high as 1 per 70 polymerized nucleotides. The data are consistent with the notion that the exceptional diversity of the HIV-1 genome results from error-prone reverse transcription.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.