Slow binding-tight binding interaction between benzimidazol-2-one inhibitors and HIV-1 reverse transcriptase containing the lysine 103 to asparagine mutation.


Novel benzimidazol-2-one non-nucleoside reverse transcriptase ...
Novel benzimidazol-2-one non-nucleoside reverse transcriptase inhibitors (NNRTIs) have been recently identified, through rational structure-based molecular modeling and docking approaches, as highly effective inhibitors of the wild type and drug-resistant HIV-1 reverse transcriptase (RT). These compounds also showed potent anti-HIV activities against viral strains, superior to the clinically approved NNRTI efavirenz. However, they were still of limited efficacy towards the K103N mutant. Here we report a detailed enzymatic analysis elucidating the molecular mechanism of interaction between benzimidazol-2-one derivatives and the K103N mutant RT. The loss of potency of these molecules towards the K103N RT was specifically due to a reduction of their association rate to the enzyme. Unexpectedly, these compounds showed a strongly reduced dissociation rate from the K103N mutant, as compared to the wild type enzyme, suggesting that, once occupied by the drug, the mutated binding site could achieve a more stable interaction with these molecules. The characterization of this slow binding-tight binding mutant-specific mechanism of interaction may pave the way to the design of more effective new generation benzimidazol-2-one NNRTIs with promising drug resistant profile and minimal toxicity.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.