Crystal structure of tert-butyldimethylsilyl-spiroaminooxathioledioxide-thymine (TSAO-T) in complex with HIV-1 reverse transcriptase (RT) redefines the elastic limits of the non-nucleoside inhibitor-binding pocket.
Journal of medicinal chemistry (2011), Volume 54, Page 2727
Abstract:
tert-Butyldimethylsilyl-spiroaminooxathioledioxide (TSAO) compounds have an embedded thymidine-analogue backbone; however, TSAO compounds invoke non-nucleoside RT inhibitor (NNRTI) resistance mutations. Our crystal structure of RT:7 (TSAO-T) complex shows that 7 binds inside the NNRTI-binding pocket, assuming a "dragon" shape, and interacts extensively with almost all the pocket residues. The structure also explains the structure-activity relationships and resistance data for TSAO compounds. The binding of 7 causes hyper-expansion of the pocket and significant rearrangement of RT subdomains. This nonoptimal complex formation is apparently responsible (1) for the lower stability of a RT (p66/p51) dimer and (2) for the lower potency of 7 despite of its extensive interactions with RT. However, the HIV-1 RT:7 structure reveals novel design features such as (1) interactions with the conserved Tyr183 from the YMDD-motif and (2) a possible way for an NNRTI to reach the polymerase active site that may be exploited in designing new NNRTIs.
Polymerases:
Topics:
Mutational Analysis, Modulators/Inhibitors, Health/Disease, Nucleotide Analogs / Template Lesions, Structure and Structure/Function, RNase H Activity, Nucleotide Incorporation, Reverse Transcriptase, Enzyme Substrate Interactions
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.