Locations of anti-AIDS drug binding sites and resistance mutations in the three-dimensional structure of HIV-1 reverse transcriptase. Implications for mechanisms of drug inhibition and resistance.


The locations of HIV-1 RT nucleoside and non-nucleoside ...
The locations of HIV-1 RT nucleoside and non-nucleoside inhibitor-binding sites and inhibitor-resistance mutations are analyzed in the context of the three-dimensional structure of the enzyme and implications for mechanisms of drug inhibition and resistance are discussed. In order to help identify residues that may play a role in inhibitor binding, solvent accessibilities of amino acids that comprise the inhibitor-binding sites in the structure of HIV-1 RT complexed with a dsDNA template-primer are analyzed. While some mutations that cause resistance to nucleoside analogs, such as AZT, ddI, and ddC, are located near enough to the dNTP-binding site to directly interfere with binding of nucleoside analogs, many are located away from the dNTP-binding site and more likely confer resistance by other mechanisms. Many of the latter mutations are located on the surface of the DNA-binding cleft and may lead to altered template-primer positioning or conformation, causing a distortion of the geometry of the polymerase active site and consequent discrimination between normal and altered dNTP substrates. Other nucleoside analog-resistance mutations located on the periphery of the dNTP-binding site may exert their effects via altered interactions with dNTP-binding site residues. The structure of the hydrophobic region in HIV-1 RT that binds non-nucleoside inhibitors, for example, nevirapine and TIBO, has been analyzed in the absence of bound ligand. The pocket that is present when non-nucleoside inhibitors are bound is not observed in the inhibitor-free structure of HIV-1 RT with dsDNA. In particular it is filled by Tyr181 and Tyr188, suggesting that the pocket is formed primarily by rotation of these large aromatic side-chains. Existing biochemical data, taken together with the three-dimensional structure of HIV-1 RT, makes it possible to propose potential mechanisms of inhibition by non-nucleoside inhibitors. One such mechanism is local distortion of HIV-1 RT structural elements thought to participate in catalysis: the beta 9-beta 10 hairpin (which contains polymerase active site residues) and the beta 12-beta 13 hairpin ("primer grip"). An alternative possibility is restricted mobility of the p66 thumb subdomain, which is supported by the observation that structural elements of the non-nucleoside inhibitor-binding pocket may act as a "hinge" for the thumb.(ABSTRACT TRUNCATED AT 400 WORDS)




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.