Mutational analysis of the fingers domain of human immunodeficiency virus type 1 reverse transcriptase.


Using BspMI cassette vectors, we have constructed a series of mutations in human immunodeficiency virus type 1 (HIV-1) reverse transcriptase (RT) that cause specific amino acid substitutions within the polymerase domain. The RNA-dependent DNA polymerase, DNA-dependent DNA polymerase, and RNase H activities of the mutant RTs were assayed. The elucidation of the structure of HIV-1 RT makes it possible to determine the locations of specific mutations in the three-dimensional structure of HIV-1 RT [E. Arnold, A. Jacobo-Molina, R. G. Nanni, R. L. Williams, X. Lu, J. Ding, A. D. Clark, Jr., A. Zhang, A. L. Ferris, P. Clark, A. Hizi, and S. H. Hughes, Nature (London) 357:85-89, 1992; L. A. Kohlstaedt, J. Wang, J. M. Friedman, P. A. Rice, and T. A. Steitz, Science 256:1783-1790, 1992]. The mutations described in this report are between amino acids 25 and 81, within the "fingers" domain of RT (Kohlstaedt et al., Science 256:1783-1790, 1992). It has been suggested that this domain may play a role in positioning the template. Although the fingers domain does not contain the active site for polymerization, several of the mutations within this domain disrupt polymerase activity without significantly affecting RNase H activity.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.