Nucleotide and amino acid polymorphisms at drug resistance sites in non-B-subtype variants of human immunodeficiency virus type 1.


We have compared nucleotide substitutions and polymorphisms at codons known to confer drug resistance in subtype B strains of human immunodeficiency virus type 1 (HIV-1) with similar substitutions in viruses of other subtypes. Genotypic analysis was performed on viruses from untreated individuals. Nucleotide and amino acid diversity at resistance sites was compared with a consensus subtype B reference virus. Among patients with non-subtype B infections, polymorphisms relative to subtype B were observed at codon 10 in protease (PR). These included silent substitutions (CTC-->CTT, CTA, TTA) and an amino acid mutation, L10I. Subtype A viruses possessed a V179I substitution in reverse transcriptase (RT). Subtype G viruses were identified by silent substitutions at codon 181 in RT (TAT-->TAC). Similarly, subtype A/G viruses were identified by a substitution at position 67 in RT (GAC-->GAT). Subtype C was distinguished by silent substitutions at codons 106 (GTA-->GTG) and 219 (AAA-->AAG) in RT and codon 48 (GGG-->GGA) in PR. Variations relative to subtype B were seen at RT position 215 (ACC-->ACT) for subtypes A and A/E. These substitutions and polymorphisms reflect different patterns of codon usage among viruses of different subtypes. However, the existence of different subtypes may only rarely affect patterns of drug resistance-associated mutations.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.