Bisphosphonate inhibitors of ATP-mediated HIV-1 reverse transcriptase catalyzed excision of chain-terminating 3'-azido, 3'-deoxythymidine: a QSAR investigation.


We report the results of an investigation of the inhibition of the ...
We report the results of an investigation of the inhibition of the ATP-mediated HIV-1 reverse transcriptase catalyzed phosphorolysis in vitro of AZT from AZT-terminated DNA primers by a series of 42 bisphosphonates. The four most active compounds possess neutral, halogen-substituted phenyl or biphenyl sidechains and have IC(50) values < 1 microM in excision inhibition assays. Use of two comparative molecular similarity analysis methods to analyze these inhibition results yielded a classification model with an overall accuracy of 94%, and a regression model having good accord with experiment (q(2)=0.63, r(2)=0.91), with the experimental activities being predicted within, on average, a factor of 2. The most active species had little or no toxicity against three human cell lines (IC(50)(avg) > 200 microM). These results are of general interest since they suggest that it may be possible to develop potent bisphosphonate-based AZT-excision inhibitors with little cellular toxicity, opening up a new route to restoring AZT sensitivity in otherwise resistant HIV-1 strains.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.