Novel human immunodeficiency virus (HIV) inhibitors that have a dual mode of anti-HIV action.


We have found that novel pyridine oxide derivatives are inhibitors of a wide range of human immunodeficiency virus (HIV) type 1 (HIV-1) and HIV-2 strains in CEM cell cultures. Some of the compounds showed inhibitory activities against recombinant HIV-1 reverse transcriptase (RT), whereas others were totally inactive against this viral protein in vitro. Partial retention of anti-HIV-1 activity against virus strains that contain a variety of mutations characteristic of those for resistance to nonnucleoside RT inhibitors and a lack of inhibitory activity against recombinant HIV-2 RT suggested that these pyridine oxide derivatives possess a mode of antiviral action independent from HIV RT inhibition. Time-of-addition experiments revealed that these pyridine oxide derivatives interact at a postintegration step in the replication cycle of HIV. Furthermore, it was shown that these compounds are active not only in acutely HIV-1-infected cells but also in chronically HIV-infected cells. A dose-dependent inhibition of virus particle release and viral protein expression was observed upon exposure to the pyridine oxide derivatives. Finally, inhibition of HIV-1 long terminal repeat-mediated green fluorescence protein expression in quantitative transactivation bioassays indicated that the additional target of action of the pyridine oxide derivatives may be located at the level of HIV gene expression.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.