Structure-based bioisosterism design, synthesis and biological evaluation of novel 1,2,4-triazin-6-ylthioacetamides as potent HIV-1 NNRTIs.

Abstract:

The development of new HIV-1 non-nucleoside reverse transcriptase ...
The development of new HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs) offers the possibility of generating novel chemical entities of increased potency. Previous investigations in our laboratory resulted in the discovery of several novel series of arylazolylthioacetanilides as potent NNRTIs. In this study, based on the structure-based bioisosterism strategy, novel 1,2,4-triazin-6-yl thioacetamide derivatives were designed, synthesized and evaluated for their anti-HIV activity in MT-4 cells. Among them, the most promising compound was 8b15 with double-digit nanomolar activity against wild-type HIV-1 (EC(50)=0.018±0.007 μM) and moderate activity against the double mutant strain RES056 (EC(50)=3.3±0.1 μM), which indicated that 1,2,4-triazin-6-yl thioacetamide can be used as a novel scaffold to develop a new class of potent NNRTIs active against both wild-type and drug-resistant HIV-1 strains. In addition, preliminary structure-activity relationship (SAR) and molecular modeling results are also briefly discussed, which provide some useful information for the further design of novel NNRTIs.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.