Ribonucleotides and manganese ions improve non-homologous end joining by human Polμ

Abstract:

Human DNA polymerase mu (Polμ), a family X member involved in DNA repair, has both template-directed and terminal transferase (template-independent) activities. In addition to their ability to incorporate untemplated nucleotides, another similarity between Polµ and terminal deoxynucleotidyl transferase (TdT) is their promiscuity in using ribonucleotides (NTPs), whose physiological significance is presently unknown. As shown here, Polµ can use NTPs instead of deoxynucleotides (dNTPs) during non-homologous end joining (NHEJ) of non-complementary ends, a Polµ-specific task. Moreover, a physiological concentration of Mn(2+) ions did benefit Polµ-mediated NHEJ by improving the efficiency and accuracy of nucleotide insertion. Analysis of different mutations in the 'steric gate' of the active site indicated that Polµ is taking advantage of an open active site, valid for selecting alternative activating metal ions and nucleotides as substrates. This versatility would allow ad hoc selection of the most appropriate nucleotide/metal ion combination for individual NHEJ events to gain efficiency without a cost in terms of fidelity, thus widening the spectrum of available solutions to position a discontinuous template strand in proper register for connection.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.