Overexpression of DNA polymerase beta in cell results in a mutator phenotype and a decreased sensitivity to anticancer drugs.

Abstract:

DNA polymerase beta (pol beta) is the most error prone of all known ...
DNA polymerase beta (pol beta) is the most error prone of all known eukaryotic DNA polymerases tested in vitro. Here, we show that cells overexpressing pol beta cDNA have acquired a spontaneous mutator phenotype. By measuring the appearance of mutational events using three independent assays, we found that genetic instability increased in the cell lines that overexpressed pol beta. In addition, these cells displayed a decreased sensitivity to cancer chemotherapeutic, bifunctional, DNA-damaging agents such as cisplatin, melphalan, and mechlorethamine, resulting in enhanced mutagenesis compared with control cells. By using cell-free extracts and modified DNA substrates, we present data in support of error-prone translesion replication as one of the key determinants of tolerance phenotype. These results have implications for the potential role of pol beta overexpression in cancer predisposition and tumor progression during chemotherapy.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.