A gradient of template dependence defines distinct biological roles for family X polymerases in nonhomologous end joining.

Abstract:

Three Pol X family members have been linked to nonhomologous end joining (NHEJ) in mammals. Template-independent TdT promotes diversity during NHEJ-dependent repair of V(D)J recombination intermediates, but the roles of the template-dependent polymerases mu and lambda in NHEJ remain unclear. We show here that pol mu and pol lambda are similarly recruited by NHEJ factors to fill gaps when ends have partially complementary overhangs, suggesting equivalent roles promoting accuracy in NHEJ. However, only pol mu promotes accuracy during immunoglobulin kappa recombination. This distinctive in vivo role correlates with the TdT-like ability of pol mu, but not pol lambda, to act when primer termini lack complementary bases in the template strand. However, unlike TdT, synthesis by pol mu in this context is primarily instructed by a template from another DNA molecule. This apparent gradient of template dependence is largely attributable to a small structural element that is present but different in all three polymerases.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.