The mechanism of nucleotide incorporation by human DNA polymerase eta differs from that of the yeast enzyme.

Abstract:

DNA polymerase eta (Poleta) catalyzes the efficient and accurate synthesis of DNA opposite cyclobutane pyrimidine dimers, and inactivation of Poleta in humans causes the cancer-prone syndrome, the variant form of xeroderma pigmentosum. Pre-steady-state kinetic studies of yeast Poleta have indicated that the low level of fidelity of this enzyme results from a poorly discriminating induced-fit mechanism. Here we examine the mechanistic basis of the low level of fidelity of human Poleta. Because the human and yeast enzymes behave similarly under steady-state conditions, we expected these enzymes to utilize similar mechanisms of nucleotide incorporation. Surprisingly, however, we find that human Poleta differs from the yeast enzyme in several important respects. The human enzyme has a 50-fold-faster rate of nucleotide incorporation than the yeast enzyme but binds the nucleotide with an approximately 50-fold-lower level of affinity. This lower level of binding affinity might provide a means of regulation whereby the human enzyme remains relatively inactive except when the cellular deoxynucleoside triphosphate concentrations are high, as may occur during DNA damage, thereby avoiding the mutagenic consequences arising from the inadvertent action of this enzyme during normal DNA replication.

Polymerases:

Topics:

Nucleotide Incorporation

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.