Structural and functional organization of herpes simplex virus DNA polymerase investigated by limited proteolysis.
The Journal of biological chemistry (1994), Volume 269, Page 22788
Abstract:
The 1235 residue herpes simplex virus DNA polymerase is a prototype alpha-like DNA polymerase and also an antiviral drug target. To investigate its organization, we mapped favored cleavage sites for seven proteases and identified three major classes of stable proteolytic fragments: 70-85-kDa N-terminal fragments, 50-70-kDa fragments that start near residues 600-700, and 12-kDa C-terminal fragments. In coimmunoprecipitation experiments, the first two classes of fragments remained associated; thus, cleavage in the center of the protein did not resolve structurally separate domains. In contrast, the 12-kDa C-terminal fragments did not remain associated with other fragments, suggesting a small separable C-terminal domain. The 70-85-kDa N-terminal fragments contained 3'-5' exonuclease and ribonuclease H activities; however, cleavage at the center of the molecule or near the C terminus appeared to destroy DNA polymerase activity. All three major classes of fragments bound DNA in DNA-cellulose chromatography and Southwestern blot analyses. The C-terminal fragments bound the viral polymerase processivity factor, UL42. The results map activities to regions of herpes simplex virus polymerase and suggest a model for its organization that may be pertinent to other DNA polymerases.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.