Photosensitized [2 + 2] cycloaddition of N-acetylated cytosine affords stereoselective formation of cyclobutane pyrimidine dimer.


Photocycloaddition between two adjacent bases in DNA produces a ...
Photocycloaddition between two adjacent bases in DNA produces a cyclobutane pyrimidine dimer (CPD), which is one of the major UV-induced DNA lesions, with either the cis-syn or trans-syn structure. In this study, we investigated the photosensitized intramolecular cycloaddition of partially-protected thymidylyl-(3'→5')-N(4)-acetyl-2'-deoxy-5-methylcytidine, to clarify the effect of the base modification on the cycloaddition reaction. The reaction resulted in the stereoselective formation of the trans-syn CPD, followed by hydrolysis of the acetylamino group. The same result was obtained for the photocycloaddition of thymidylyl-(3'→5')-N(4)-acetyl-2'-deoxycytidine, whereas both the cis-syn and trans-syn CPDs were formed from thymidylyl-(3'→5')-thymidine. Kinetic analyses revealed that the activation energy of the acid-catalyzed hydrolysis is comparable to that reported for the thymine-cytosine CPD. These findings provided a new strategy for the synthesis of oligonucleotides containing the trans-syn CPD. Using the synthesized oligonucleotide, translesion synthesis by human DNA polymerase η was analyzed.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.