Fidelity of phi 29 DNA polymerase. Comparison between protein-primed initiation and DNA polymerization.


Phi 29 DNA polymerase is able to catalyze two different synthetic reactions: protein-primed initiation and DNA polymerization. We have studied the fidelity of phi 29 DNA polymerase when carrying out these two reactions. Global fidelity was dissected into three steps: insertion discrimination, mismatch elongation, and proofreading. The insertion discrimination of phi 29 DNA polymerase in DNA polymerization ranged from 10(4) to 10(6). The efficiency of mismatch elongation was 10(5)-10(-6)-fold lower than that of a properly paired primer terminus. These factors indicate that DNA polymerization catalyzed by phi 29 DNA polymerase is a highly accurate process. Conversely, the insertion fidelity of protein-primed initiation was quite low, the insertion discrimination factor being about 10(2). Mismatch elongation discrimination was also rather low: mismatched terminal protein (TP).dNMP complexes were elongated from 2- to 6-fold more slowly than the correct TP.dNMP complex. Even more, the 3'-->5' exonuclease activity of phi 29 DNA polymerase was unable to act on the TP.dNMP initiation complex, precluding the possibility that a wrong dNMP covalently linked to TP could be excised and corrected. Therefore, protein-primed initiation can be predicted as a quite inaccurate reaction. The problem of maintaining the sequence at the DNA ends is discussed in the context of a recently described model for protein-primed initiation.




new topics/pols set partial results complete validated


No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:


Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).


It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.