A new proofreading mechanism for lesion bypass by DNA polymerase-λ

Abstract:

Replicative DNA polymerases (DNA pols) increase their fidelity by removing misincorporated nucleotides with their 3' → 5' exonuclease activity. Exonuclease activity reduces translesion synthesis (TLS) efficiency and TLS DNA pols lack 3' → 5' exonuclease activity. Here we show that physiological concentrations of pyrophosphate (PP(i)) activate the pyrophosphorolytic activity by DNA pol-λ, allowing the preferential excision of the incorrectly incorporated A opposite a 7,8-dihydro-8-oxoguanine lesion, or T opposite a 6-methyl-guanine, with respect to the correct C. This is the first example of an alternative proofreading mechanism used during TLS.

Polymerases:

Topics:

Nucleotide Analogs / Template Lesions

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Log in to edit reference All References

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.