A novel mechanism for inhibition of HIV-1 reverse transcriptase.

Abstract:

The human immunodeficiency virus (HIV) epidemic is an important ...
The human immunodeficiency virus (HIV) epidemic is an important medical problem. Although combination drug regimens have produced dramatic decreases in viral load, current therapies do not provide a cure for HIV infection. We have used structure-based design and combinatorial medicinal chemistry to identify potent and selective HIV-1 reverse transcriptase (RT) inhibitors that may work by a mechanism distinct from that of current HIV drugs. The most potent of these compounds (compound 4, 2-naphthalenesulfonic acid, 4-hydroxy-7-[[[[5-hydroxy-6-[(4-cinnamylphenyl)azo]-7-sulfo-2-naphthalenyl]amino]carbonyl]amino]-3-[(4-cinnamylphenyl)azo], disodium salt) has an IC(50) of 90 nM for inhibition of polymerase chain extension, a K(d) of 40 nM for inhibition of DNA-RT binding, and an IC(50) of 25-100 nM for inhibition of RNaseH cleavage. The parent compound (1) was as effective against 10 nucleoside and non-nucleoside resistant HIV-1 RT mutants as it was against the wild-type enzyme. Compound 4 inhibited HIV-1 RT and murine leukemia virus (MLV) RT, but it did not inhibit T(4) DNA polymerase, T(7) DNA polymerase, or the Klenow fragment at concentrations up to 200 nM. Finally, compound 4 protected cells from HIV-1 infection at a concentration more than 40 times lower than the concentration at which it caused cellular toxicity.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.