The DNA polymerase lambda is required for the repair of non-compatible DNA double strand breaks by NHEJ in mammalian cells.
Capp JP, Boudsocq F, Bertrand P, Laroche-Clary A, Pourquier P, Lopez BS, Cazaux C, Hoffmann JS, Canitrot Y
Nucleic acids research (2006), Volume 34, Page 2998
Abstract:
DNA polymerase lambda (pollambda) is a recently identified DNA polymerase whose cellular function remains elusive. Here we show, that pollambda participates at the molecular level in a chromosomal context, in the repair of DNA double strand breaks (DSB) via non-homologous end joining (NHEJ) in mammalian cells. The expression of a catalytically inactive form of pollambda (pollambdaDN) decreases the frequency of NHEJ events in response to I-Sce-I-induced DSB whereas inactivated forms of its homologues polbeta and polmu do not. Only events requiring DNA end processing before ligation are affected; this defect is associated with large deletions arising in the vicinity of the induced DSB. Furthermore, pollambdaDN-expressing cells exhibit increased sensitization and genomic instability in response to ionizing radiation similar to that of NHEJ-defective cells. Our data support a requirement for pollambda in repairing a subset of DSB in genomic DNA, thereby contributing to the maintenance of genetic stability mediated by the NHEJ pathway.
Polymerases:
Topics:
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.