Attempt to reduce cytotoxicity by synthesizing the L-enantiomer of 4'-C-ethynyl-2'-deoxypurine nucleosides as antiviral agents against HIV and HBV.

Abstract:

We investigated the potential of 4'-C-substituted nucleosides for the ...
We investigated the potential of 4'-C-substituted nucleosides for the treatment of HIV-1 and HBV. Of the nucleosides we prepared, several 4'-C-ethynyl-2'-deoxypurine nucleosides showed the most potent anti-HIV activity. However, two candidates, 4'-C-ethynyl-2'-deoxyguanosine and 9-(2-deoxy-4-C-ethynyl-beta-D-ribo-pentofuranosyl)-2,6-diaminopurine, were very toxic during in vivo study. On the other hand, lamivudine (3TC) is known to show remarkable activity against HIV and HBV with lower cytotoxicity. Therefore, we attempted to synthesize the L-enantiomer of 4'-C-ethynyl-2'-deoxypurine nucleosides in 20-21 steps. These methods consisted of preparing 4-C-ethynyl-L-sugar, starting from D-arabinose and then condensing the L-sugar derivative with 2,6-diaminopurine. 4'-C-Ethynyl-2'-deoxyguanosine was also prepared by enzymatic deamination from the 2,6-diaminopurine derivative. The compounds' antiviral activity against HIV and HBV was then evaluated. Unfortunately, they demonstrated no activity and no cytotoxicity.

Polymerases:

Topics:

Status:

new topics/pols set partial results complete validated

Results:

No results available for this paper.

Entry validated by:

Using Polbase tables:

Sorting:

Tables may be sorted by clicking on any of the column titles. A second click reverses the sort order. <Ctrl> + click on the column titles to sort by more than one column (e.g. family then name).

Filtering:

It is also possible to filter the table by typing into the search box above the table. This will instantly hide lines from the table that do not contain your search text.