In vitro replication slippage by DNA polymerases from thermophilic organisms.
Journal of molecular biology (2001), Volume 312, Page 323
Abstract:
Replication slippage of DNA polymerases is a potential source of spontaneous genetic rearrangements in prokaryotic and eukaryotic cells. Here we show that different thermostable DNA polymerases undergo replication slippage in vitro, during single-round replication of a single-stranded DNA template carrying a hairpin structure. Low-fidelity polymerases, such as Thermus aquaticus (Taq), high-fidelity polymerases, such as Pyrococcus furiosus (Pfu) and a highly thermostable polymerase from Pyrococcus abyssi (Pyra exo(-)) undergo slippage. Thermococcus litoralis DNA polymerase (Vent) is also able to slip; however, slippage can be inhibited when its strand-displacement activity is induced. Moreover, DNA polymerases that have a constitutive strand-displacement activity, such as Bacillus stearothermophilus DNA polymerase (Bst), do not slip. Polymerases that slip during single-round replication generate hairpin deletions during PCR amplification, with the exception of Vent polymerase because its strand-displacement activity is induced under these conditions. We show that these hairpin deletions occurring during PCR are due to replication slippage, and not to a previously proposed process involving polymerization across the hairpin base.
Polymerases:
Topics:
Fidelity, Nucleotide Incorporation, Exonuclease Activity, Source / Purification
Status:
new | topics/pols set | partial results | complete | validated |