Replication of 2-hydroxyadenine-containing DNA and recognition by human MutSalpha.
Barone F, McCulloch SD, Macpherson P, Maga G, Yamada M, Nohmi T, Minoprio A, Mazzei F, Kunkel TA, Karran P, Bignami M
DNA repair (2007), Volume 6, Page 355
Abstract:
2-Hydroxyadenine (2-OH-A), a product of DNA oxidation, is a potential source of mutations. We investigated how representative DNA polymerases from the A, B and Y families dealt with 2-OH-A in primer extension experiments. A template 2-OH-A reduced the rate of incorporation by DNA polymerase alpha (Pol alpha) and Klenow fragment (Kf(exo-)). Two Y family DNA polymerases, human polymerase eta (Pol eta) and the archeal Dpo4 polymerase were affected differently. Bypass by Pol eta was very inefficient whereas Dpo4 efficiently replicated 2-OH-A. Replication of a template 2-OH-A by both enzymes was mutagenic and caused base substitutions. Dpo4 additionally introduced single base deletions. Thermodynamic analysis showed that 2-OH-A forms stable base pairs with T, C and G, and to a lesser extent with A. Oligonucleotides containing 2-OH-A base pairs, including the preferred 2-OH-A:T, were recognized by the human MutSalpha mismatch repair (MMR). MutSalpha also recognized 2-OH-A located in a repeat sequence that mimics a frameshift intermediate.
Polymerases:
Topics:
Other Enzymatic Activities, Structure and Structure/Function, Fidelity
Status:
new | topics/pols set | partial results | complete | validated |
Results:
No results available for this paper.